LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biochemical characterization of TyrA dehydrogenases from Saccharomyces cerevisiae (Ascomycota) and Pleurotus ostreatus (Basidiomycota).

Photo by sanlad from unsplash

L-Tyrosine is an aromatic amino acid necessary for protein synthesis in all living organisms and a precursor of secondary (specialized) metabolites. In fungi, tyrosine-derived compounds are associated with virulence and… Click to show full abstract

L-Tyrosine is an aromatic amino acid necessary for protein synthesis in all living organisms and a precursor of secondary (specialized) metabolites. In fungi, tyrosine-derived compounds are associated with virulence and defense (i.e. melanin production). However, how tyrosine is produced in fungi is not fully understood. Generally, tyrosine can be synthesized via two pathways: by prephenate dehydrogenase (TyrAp/PDH), a pathway found in most bacteria, or by arogenate dehydrogenase (TyrAa/ADH), a pathway found mainly in plants. Both enzymes require the cofactor NAD+ or NADP+ and typically are strongly feedback inhibited by tyrosine. Here, we biochemically characterized two TyrA enzymes from two distantly related fungi in the Ascomycota and Basidiomycota, Saccharomyces cerevisiae (ScTyrA/TYR1) and Pleurotus ostreatus (PoTyrA), respectively. We found that both enzymes favor the prephenate substrate and NAD+ cofactor in vitro. Interestingly, while PoTyrA was strongly inhibited by tyrosine, ScTyrA exhibited relaxed sensitivity to tyrosine inhibition. We further mutated ScTyrA at the amino acid residue that was previously shown to be involved in the substrate specificity of plant TyrAs; however, no changes in its substrate specificity were observed, suggesting that a different mechanism is involved in the TyrA substrate specificity of fungal TyrAs. The current findings provide foundational knowledge to further understand and engineer tyrosine-derived specialized pathways in fungi.

Keywords: saccharomyces cerevisiae; tyrosine; pleurotus ostreatus; ascomycota

Journal Title: Archives of biochemistry and biophysics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.