LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanistic study of the biosynthesis of R-phenylcarbinol by acetohydroxyacid synthase enzyme using hybrid quantum mechanics/molecular mechanics simulations.

Photo by solamander from unsplash

The biosynthesis of R-phenylacetylcarbinol (R-PAC) by the acetohydroxy acid synthase, (AHAS) is addressed by molecular dynamics simulations (MD), hybrid quantum mechanics/molecular mechanics (QM/MM), and QM/MM free energy calculations. The results… Click to show full abstract

The biosynthesis of R-phenylacetylcarbinol (R-PAC) by the acetohydroxy acid synthase, (AHAS) is addressed by molecular dynamics simulations (MD), hybrid quantum mechanics/molecular mechanics (QM/MM), and QM/MM free energy calculations. The results show the reaction starts with the nucleophilic attack of the C2α atom of the HEThDP intermediate on the Cβ atom of the carbonyl group of benzaldehyde substrate via the formation of a transition state (TS1) with the HEThDP intermediate under 4'-aminopyrimidium (APH+) form. The calculated activation free energy for this step is 16 kcal mol-1 at 27 °C. From this point, the reaction continues with the abstraction of Hβ atom of the HEThDP intermediate by the Oβ atom of benzaldehyde to form the intermediate I. The reaction is completed with the cleavage of the bond C2α-C2 to form the product R-PAC and to regenerate the ylide intermediate under the APH+ form, allowing in this way to reinitiate to the catalytic cycle once more. The calculated activation barrier for this last step is 14 kcal mol-1 at 27 °C.

Keywords: biosynthesis; hybrid quantum; molecular mechanics; mechanics molecular; quantum mechanics; mechanics

Journal Title: Archives of biochemistry and biophysics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.