Membrane-associated proteins carry out a wide range of essential cellular functions but the structural characterization needed to understand these functions is dramatically underrepresented in the Protein Data Bank. Producing a… Click to show full abstract
Membrane-associated proteins carry out a wide range of essential cellular functions but the structural characterization needed to understand these functions is dramatically underrepresented in the Protein Data Bank. Producing a soluble, stable and active form of a membrane-associated protein presents formidable challenges, as evidenced by the variety of approaches that have been attempted with a multitude of different membrane proteins to achieve this goal. Aspartate N-acetyltransferase (ANAT) is a membrane-anchored enzyme that performs a critical function, the synthesis of N-acetyl-l-aspartate (NAA), the second most abundant amino acid in the brain. This amino acid is a precursor for a neurotransmitter, and alterations in brain NAA levels have been implicated as a causative effect in Canavan disease and has been suggested to be involved in other neurological disorders. Numerous prior attempts have failed to produce a soluble form of ANAT that is amenable for functional and structural investigations. Through the application of a range of different approaches, including fusion partner constructs, linker modifications, membrane-anchor modifications, and domain truncations, a highly soluble, stable and fully active form of ANAT has now been obtained. Producing this modified enzyme form will accelerate studies aimed at structural characterization and structure-guided inhibitor development.
               
Click one of the above tabs to view related content.