LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid determination of ultra-trace plutonium isotopes (239Pu, 240Pu and 241Pu) in small-volume human urine bioassay using sector-field inductively coupled plasma mass spectrometry.

Photo from wikipedia

A rapid method with enhanced 238U decontamination was developed for ultra-trace Pu analysis in small-volume urine bioassays. This method consists of acid digestion, co-precipitation, extraction chromatography and sector-field inductively coupled… Click to show full abstract

A rapid method with enhanced 238U decontamination was developed for ultra-trace Pu analysis in small-volume urine bioassays. This method consists of acid digestion, co-precipitation, extraction chromatography and sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) measurement. Parameters that may influence the analytical performance were studied systematically. This method achieved a high 238U decontamination factor (3.8 × 106) and the 242Pu recovery was stable for 20 mL and 100 mL urine bioassays with an average value of 72.7 ± 5.5%. The limits of detection for 239Pu, 240Pu and 241Pu by the method were 0.016 fg mL-1, 0.016 fg mL-1 and 0.019 fg mL-1 for 20 mL urine samples and 0.003 fg mL-1, 0.002 fg mL-1 and 0.003 fg mL-1 for 100 mL urine samples, respectively. Considering the small volume of urine employed in this study, the absolute detection limits of the method were comparable or even better than those measured with thermal ionization mass spectrometry and accelerator mass spectrometry. All procedures for 20 mL and 100 mL urine bioassays were completed in 9.5 h and 11 h, respectively, and analysis of 10 samples could be finished within one day. With the considerably low detection limits of Pu isotopes and high sample throughput, this method would be a promising tool for the quick response to radiological emergencies and for rapid screening of unexpected occupational exposures of workers involved in the future FDNPP reactor decommissioning operations.

Keywords: small volume; ultra trace; mass; mass spectrometry

Journal Title: Analytica chimica acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.