LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A fast and low-cost microfabrication approach for six types of thermoplastic substrates with reduced feature size and minimized bulges using sacrificial layer assisted laser engraving.

Photo from wikipedia

Since polydimethylsiloxane (PDMS) is notorious for its severe sorption to biological compounds and even nanoparticles, thermoplastics become a promising substrate for microdevices. Although CO2 laser engraving is an efficient method… Click to show full abstract

Since polydimethylsiloxane (PDMS) is notorious for its severe sorption to biological compounds and even nanoparticles, thermoplastics become a promising substrate for microdevices. Although CO2 laser engraving is an efficient method for thermoplastic device fabrication, it accompanies with poor bonding issues due to severe bulging and large feature size determined by the diameter of laser beam. In this study, a low-cost microfabrication method is proposed by reversibly sealing a 1 mm thick polymethylmethacrylate (PMMA) over an engraving substrate to reduce channel feature size and minimize bulges of laser engraved channels. PMMA, polycarbonate (PC), polystyrene (PS), perfluoroalkoxy alkane (PFA), cyclic-olefin polymers (COP) and polylactic acid (PLA) were found compatible with this sacrificial layer assisted laser engraving technique. Microchannel width as small as ∼40 μm was attainable by a laser beam that was 5 times larger in diameter. Bulging height was significantly reduced to less 5 μm for most substrates, which facilitated leak proof device bonding without channel deformation. Microdevices with high aspect ratio channels were prepared to demonstrate the applicability of this microfabrication method. We believe this fast and low-cost fabrication approach for thermoplastics will be of interest to researchers who have encountered problem with polydimethylsiloxane based microdevices in their applications.

Keywords: feature size; low cost; laser engraving; microfabrication

Journal Title: Analytica chimica acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.