LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rotational paper-based electrochemiluminescence immunodevices for sensitive and multiplexed detection of cancer biomarkers.

Photo from wikipedia

This paper describes a novel rotational paper-based analytical device (RPAD) to implement multi-step electrochemiluminescence (ECL) immunoassays. The integrated paper-based rotational valves can be easily controlled by rotating paper discs manually… Click to show full abstract

This paper describes a novel rotational paper-based analytical device (RPAD) to implement multi-step electrochemiluminescence (ECL) immunoassays. The integrated paper-based rotational valves can be easily controlled by rotating paper discs manually and this advantage makes it user-friendly to untrained users to carry out the multi-step assays. In addition, the rotational valves are reusable and the response time can be shortened to several seconds, which promotes the rotational paper-based device to have great advantages in multi-step operations. Under the control of rotational valves, multi-step ECL immunoassays were conducted on the rotational device for the multiplexed detection of carcinoembryonic antigen (CEA) and prostate specific antigen (PSA). The rotational device exhibited excellent analytical performance for CEA and PSA, and they could be detected in the linear ranges of 0.1-100 ng mL-1 and 0.1-50 ng mL-1 with detection limits down to 0.07 ng mL-1 and 0.03 ng mL-1, respectively, which were within the ranges of clinical concentrations. We hope this technique will open a new avenue for the fabrication of paper-based valves and provide potential application in clinical diagnostics.

Keywords: paper based; multiplexed detection; rotational paper; paper; multi step

Journal Title: Analytica chimica acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.