LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ionisation efficiencies can be predicted in complicated biological matrices: A proof of concept.

Photo by hngstrm from unsplash

The importance of metabolites is assessed based on their abundance. Most of the metabolites are at present identified based on ESI/MS measurements and the relative abundance is assessed from the… Click to show full abstract

The importance of metabolites is assessed based on their abundance. Most of the metabolites are at present identified based on ESI/MS measurements and the relative abundance is assessed from the relative peak areas of these metabolites. Unfortunately, relative intensities can be highly misleading as different compounds ionise with vastly different efficiency in the ESI source and matrix components may cause severe ionisation suppression. In order to reduce this inaccuracy, we propose predicting the ionisation efficiencies of the analytes in seven biological matrices (neat solvent, blood, plasma, urine, cerebrospinal fluid, brain and liver tissue homogenates). We demonstrate, that this approach may lead to an order of magnitude increase in accuracy even in complicated matrices. For the analyses of 10 compounds, mostly drugs, in negative electrospray ionisation mode we reduce the predicted abundance mismatch compared to the actual abundance on average from 660 to 8 times. The ionisation efficiencies were predicted based on i) the charge delocalisation parameter WAPS and ii) the degree of ionisation α, and the prediction model was subsequently validated based on the cross-validation method 'leave-one-out'.

Keywords: predicted complicated; ionisation efficiencies; efficiencies predicted; abundance; ionisation; biological matrices

Journal Title: Analytica chimica acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.