LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hollow-fiber renewal liquid membrane extraction coupled with 96-well plate system as innovative high-throughput configuration for the determination of endocrine disrupting compounds by high-performance liquid chromatography-fluorescence and diode array detection.

Photo by _louisreed from unsplash

This paper describes a new configuration of the hollow fiber renewal liquid membrane (HFRLM) procedure for the high-throughput determination of the endocrine disrupting compounds 4-nonylphenol, 4-octylphenol, 4-tert-octylphenol, methylparaben, ethylparaben and… Click to show full abstract

This paper describes a new configuration of the hollow fiber renewal liquid membrane (HFRLM) procedure for the high-throughput determination of the endocrine disrupting compounds 4-nonylphenol, 4-octylphenol, 4-tert-octylphenol, methylparaben, ethylparaben and bisphenol A using a 96-well plate system and high-performance liquid chromatography. In this configuration, cylindrical blades were adapted as a support for polypropylene membranes used as supported liquid membranes in the HFRLM approach. The proposed configuration exhibited important advantages including high-throughput, low solvent and sample consumption, and good analytical performance. The optimized extraction conditions were achieved with the use of a mixture comprised of 50:50 v/v 1-octanol:hexane as the supported liquid membrane, sample pH 5, extraction solvent 15 μL (hexane) and extraction time 45 min. The limits of quantification varied from 0.5 μg L-1 for 4-octylphenol to 15 μg L-1 for methylparaben and ethylparaben and the r2 ranged from 0.9908 for methylparaben to 0.9992 for 4-tert-octylphenol. HFRLM combined with the use of a 96-well plate provides an environmentally-friendly configuration. It offers good accuracy when applied to analyze water samples, with relative recoveries ranging from 72 to 130%, for 4-octylphenol and 4-nonylphenol, respectively, and precision varying from 1 to 14.3%, for 4-nonylphenol at 1.0 μg L-1 and bisphenol A at 8.0 μg L-1, respectively.

Keywords: extraction; liquid membrane; configuration; well plate; high throughput

Journal Title: Analytica chimica acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.