LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid synthesis of Au/Ag bimetallic nanoclusters with highly biochemical stability and its applications for temperature and ratiometric pH sensing.

Herein, we developed a simple and rapid strategy to synthesize gold/silver bimetallic nanoclusters (Au/Ag NCs) with highly biochemical stability by a one-pot route. The Au/Ag NCs were obtained via a… Click to show full abstract

Herein, we developed a simple and rapid strategy to synthesize gold/silver bimetallic nanoclusters (Au/Ag NCs) with highly biochemical stability by a one-pot route. The Au/Ag NCs were obtained via a chemical reduction procedure in alkaline aqueous solution at 75 °C within only 20 min by employing bovine serum albumin (BSA) as both ligand and reductant. The as-obtained Au/Ag NCs displayed bright orange fluorescence with an emission peak located at 570 nm and temperature-dependent fluorescence property, which were utilized as fluorescent thermometer directly. More intriguingly, the Au/Ag NCs were very stable against various pH values, ions, biothiols, H2O2, fetal bovine serum (FBS), RPMI 1640 medium and amino acids. Taking advantage of the excellent biochemical stability, a ratiometric fluorescence biosensor, fluorescein-5-isothiocyanate (FITC)-Au/Ag NCs, was constructed for pH sensing based on the incorporation of FITC into the Au/Ag NCs. Furthermore, the ratiometric pH sensor was also successfully applied on the model of HeLa cells.

Keywords: biochemical stability; bimetallic nanoclusters; rapid synthesis; stability; synthesis bimetallic; highly biochemical

Journal Title: Analytica chimica acta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.