LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hypersensitive electrochemical immunoassays based on highly N-doped silicon carbide (SiC) electrode.

Photo from wikipedia

Highly N-doped SiC was presented as an optimal electrode for electrochemical immunoassays with a far higher sensitivity than chemiluminescence detection. As the first step, the electrochemical properties of highly N-doped… Click to show full abstract

Highly N-doped SiC was presented as an optimal electrode for electrochemical immunoassays with a far higher sensitivity than chemiluminescence detection. As the first step, the electrochemical properties of highly N-doped SiC, such as the double-layer capacitance (Cdl), rate constant for electron transfer (kapp) and ideal polarizable potential range (electrochemical window) were analyzed and compared with those of Au, Pt, and graphite electrodes. The highly N-doped SiC electrode was used for the quantification of oxidized 3,3',5,5'-tetramethylbenzidine (TMB) which was widely used as chromogenic substrate for commercialized immunoassay kits. In order to enhance the sensitivity for the quantification of the oxidized TMB the chronoamperometry was applied to avoid the background current of i-V measurement. Finally, the chronoamperometry based on the highly N-doped SiC electrode was applied to commercial immunoassay kits for the medical diagnosis of the human immunodeficiency virus (HIV) and the human hepatitis B surface antigen (hHBsAg). The chronoamperometric measurement based on the highly N-doped SiC electrode was proved to detect at far lower limits in comparison with the conventional optical density measurement as well as the chemiluminescence assay based on luminol as a chemiluminescent probe.

Keywords: highly doped; sic electrode; doped sic; based highly; electrochemical immunoassays

Journal Title: Analytica chimica acta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.