LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An electrochemical paper based nano-genosensor modified with reduced graphene oxide-gold nanostructure for determination of glycated hemoglobin in blood.

Photo by aminmoshrefi from unsplash

Hemoglobin A1c (HbA1c) is a standard biomarker to measure long-term average glucose concentration for diagnosis and monitoring of diabetes. Various methods have been reported for measuring HbA1c, however, portable and… Click to show full abstract

Hemoglobin A1c (HbA1c) is a standard biomarker to measure long-term average glucose concentration for diagnosis and monitoring of diabetes. Various methods have been reported for measuring HbA1c, however, portable and precise determination is still challenging. Herein, a new highly sensitive electrochemical nanobiosensor is developed for the specific determination of HbA1c. A nanocomposite of reduced graphene oxide (rGO) and gold with hierarchical architecture structure was electrochemically deposited on a cheap and flexible graphite sheet (GS) electrode. The nanocomposite increased the surface area, improved the electron transfer on the electrode surface and augmented the signal. It also provided a suitable substrate for linkage of thiolated DNA aptamer as a bioreceptor on the electrode surface by strong covalent bonding. The quantitative label free detection was carried out by differential pulse voltammetry (DPV) in a phosphate-buffered saline (PBS) solution containing redox probe Fe(CN)63-/4-. The detection is based on insulating the surface in presence of HbA1c and decreasing the current, which is directly related to the HbA1c concentration. The nanobiosensor demonstrated high sensitivity of 269.2 μA. cm-2, wide linear range of 1 nM-13.83 μM with a low detection limit of 1 nM. The biosensor was successfully used for measuring HbA1c in blood real sample. Furthermore, it is promising to use it as a part of a point of care device for low-invasive screening and management of diabetes.

Keywords: blood; reduced graphene; graphene oxide; electrochemical paper; determination; paper based

Journal Title: Analytica chimica acta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.