LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel and ultrasensitive nonenzymatic glucose sensor based on pulsed laser scribed carbon paper decorated with nanoporous nickel network.

Photo from wikipedia

Functional laser scribing carbon paper (LSCP) decorated with highly uniform Ni nanoparticles were constructed through a facile electroless plating. The nanocomposites were characterized by high resolution scanning electron microscope, X-ray… Click to show full abstract

Functional laser scribing carbon paper (LSCP) decorated with highly uniform Ni nanoparticles were constructed through a facile electroless plating. The nanocomposites were characterized by high resolution scanning electron microscope, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and chronoamperometry. The results showed high electron transferring kinetics of this sensor, which can be ascribed to their excellent properties such as rich pore channels, excellent structural durability, and large surface area. These properties facilitated mass transfer and electron conductions. Notably, a systematical response surface methodology simulating-modeling-predicting-optimizing design was employed to simulate, model and optimize processing parameters to gain the optimal conductivity of 8.52 × 106 S m-1. The obtained sensor owned high electrochemical activity and wide linear responses (0.80 μM-2.50 mM and 4.50 mM-15.20 mM), low detection limit of 20 nM (S/N = 3) to the glucose detection. The glucose determination in human serum and perspiration samples are also successful. Therefore, LSCP/NN provides an excellent sensing platform towards flexible biosensors in monitoring physical conditions.

Keywords: carbon paper; spectroscopy; novel ultrasensitive; sensor

Journal Title: Analytica chimica acta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.