Functional laser scribing carbon paper (LSCP) decorated with highly uniform Ni nanoparticles were constructed through a facile electroless plating. The nanocomposites were characterized by high resolution scanning electron microscope, X-ray… Click to show full abstract
Functional laser scribing carbon paper (LSCP) decorated with highly uniform Ni nanoparticles were constructed through a facile electroless plating. The nanocomposites were characterized by high resolution scanning electron microscope, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and chronoamperometry. The results showed high electron transferring kinetics of this sensor, which can be ascribed to their excellent properties such as rich pore channels, excellent structural durability, and large surface area. These properties facilitated mass transfer and electron conductions. Notably, a systematical response surface methodology simulating-modeling-predicting-optimizing design was employed to simulate, model and optimize processing parameters to gain the optimal conductivity of 8.52 × 106 S m-1. The obtained sensor owned high electrochemical activity and wide linear responses (0.80 μM-2.50 mM and 4.50 mM-15.20 mM), low detection limit of 20 nM (S/N = 3) to the glucose detection. The glucose determination in human serum and perspiration samples are also successful. Therefore, LSCP/NN provides an excellent sensing platform towards flexible biosensors in monitoring physical conditions.
               
Click one of the above tabs to view related content.