LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-situ growth of 3D rosette-like copper nanoparticles on carbon cloth for enhanced sensing of ammonia based on copper electrodissolution.

Photo by kdghantous from unsplash

Copper is an attractive candidate for sensing ammonia. Here, an electrodissolution mechanism for measuring liquid-phase ammonia was developed via a novel three-dimensional rosette-like structure of copper nanoparticles (CuNPs) integrated onto… Click to show full abstract

Copper is an attractive candidate for sensing ammonia. Here, an electrodissolution mechanism for measuring liquid-phase ammonia was developed via a novel three-dimensional rosette-like structure of copper nanoparticles (CuNPs) integrated onto carbon cloth (CuNPs/CC). A one-step hydrothermal synthetic procedure was employed to construct the metallic CuNPs with a stereo rosette-like pattern on flexible CC substrate. The morphology, composition and sensing performance of the as-prepared composite were characterised in detail. The CuNPs/CC composite showed excellent sensing performance to ammonia, which is attributed to the electrodissolution of CuNPs being promoted by ammonia to form a stabilised copper-ammonia complex. This electrochemical response occurs without the electro-oxidation of ammonia, thus avoiding the energy barrier of the N-N bond and the toxicity of N-adsorbates, which is advantageous for ammonia detection. In addition, the sensor also shows very high sensitivity to ammonia with a low detection limit, as well as good anti-interference performance, repeatability and stability. The high accuracy and precision for the quantification of ammonia concentration in a variety of real samples indicate that the CuNPs/CC composition has potential in the development of high-performance ammonia sensors.

Keywords: copper; electrodissolution; ammonia; sensing ammonia; rosette like; copper nanoparticles

Journal Title: Analytica chimica acta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.