LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combination of stable isotope ratio data and chromatographic impurity signatures as a comprehensive concept for the profiling of highly prevalent synthetic cannabinoids and their precursors.

Photo by mishu3d from unsplash

In this study, we utilized elemental analyser (EA) and gas-chromatography (GC) isotope ratio mass spectrometry (IRMS) and ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) in a comprehensive profiling approach… Click to show full abstract

In this study, we utilized elemental analyser (EA) and gas-chromatography (GC) isotope ratio mass spectrometry (IRMS) and ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) in a comprehensive profiling approach assessing the chromatographic impurity signatures and δ13C and δ15N isotope ratios of synthetic cannabinoids from police seizures and internet test purchases. Main target of this study was the highly prevalent synthetic cannabinoid MDMB-CHMICA (methyl (2S)-2-([1-(cyclohexylmethyl)-1H-indol-3-yl]formamido)-3,3-dimethylbutaoate). Overall, 61 powder and 118 herbal blend (also called "Spice-Products") samples were analysed using both analytical techniques and evaluated in a joint model to link samples from a common source. As a key finding, three agglomerates of Spice-product samples with similar dates of purchase were identified in the IRMS data, possibly representing larger shipments of MDMB-CHMICA, each produced with the same precursor material, successively delivered to the European market. The three agglomerates were refined into multiple sub-clusters based on the impurity profiling data, each representing an individual synthesis batch. One of the agglomerates identified in the IRMS data was found to consist two groups of four sub-clusters, respectively, with majorly different impurity profiles, demonstrating the necessity for both analytical techniques to extract the maximum amount of information from a limited sample pool. Additionally, 31 samples containing the recently surfaced synthetic cannabinoid Cumyl-PeGaClone (5-pentyl-2-(2-phenylpropan-2-yl)-2,5-dihydro-1H-pyrido[4,3-b]indol-1-one) were analysed for their and δ13C and δ15N isotope ratios to put the isotopic data recorded for MDMB-CHMNICA in a more global perspective. Three building blocks of precursor chemicals (indole, tert-leucine, cumylamine) potentially used for the synthesis of the two named synthetic cannabinoids were acquired from different global vendors and measured for their δ13C and δ15N isotope ratios to better understand variations in the isotopic composition of the synthetic cannabinoids and to trace their origin.

Keywords: synthetic cannabinoids; impurity signatures; isotope ratio; isotope; chromatographic impurity

Journal Title: Analytica chimica acta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.