LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical biosensing to move forward in cancer epigenetics and metastasis: A review.

Photo from wikipedia

Early detection and effective treatment are crucial to reduce the physical, emotional, and financial pressure exerted by growing cancer burden on individuals, families, communities, and health systems. Currently, it is… Click to show full abstract

Early detection and effective treatment are crucial to reduce the physical, emotional, and financial pressure exerted by growing cancer burden on individuals, families, communities, and health systems. Currently, it is clear that the accurate analysis of emerging cancer epigenetic and metastatic-related biomarkers at different molecular levels is envisaged as an exceptional solution for early and reliable diagnosis and the improvement of therapy efficiency through personalized treatments. Within this field, electrochemical biosensing has demonstrated to be competitive over other emerging and currently used methodologies for the determination of these biomarkers accomplishing the premises of user-friendly, multiplexing ability, simplicity, reduced costs and decentralized analysis, demanded by clinical oncology, thus priming electrochemical biosensors to spark a diagnostic revolution for cancer prediction and eradication. This review article critically discusses the main characteristics, opportunities and versatility exhibited by electrochemical biosensing, through highlighting representative examples published during the last two years, for the reliable determination of these emerging biomarkers, with great diagnostic, predictive and prognostic potential. Special attention is paid on electrochemical affinity biosensors developed for the single or multiplexed determination of methylation events, non-coding RNAs, ctDNA features and metastasis-related protein biomarkers both in liquid and solid biopsies of cancer patients. The main challenges to which further work must be addressed and the impact of these advances should have in the clinical acceptance of these emerging biomarkers are also discussed which decisively will contribute to understand the molecular basis involved in the epigenetics and metastasis of cancer and to apply more efficient personalized therapies.

Keywords: biosensing move; forward cancer; move forward; electrochemical biosensing; cancer; epigenetics metastasis

Journal Title: Analytica chimica acta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.