LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a cysteine sensor based on the peroxidase-like activity of AgNPs@ Fe3O4 core-shell nanostructures.

Photo by efekurnaz from unsplash

In this study, a facile one step solvo-thermal procedure has been employed in generating magnetite-silver core-shell nanocomposites (AgNPs@ Fe3O4) with superior peroxidase-like catalytic property than bare magnetic nanoparticles (Fe3O4). The… Click to show full abstract

In this study, a facile one step solvo-thermal procedure has been employed in generating magnetite-silver core-shell nanocomposites (AgNPs@ Fe3O4) with superior peroxidase-like catalytic property than bare magnetic nanoparticles (Fe3O4). The composites were characterized using different techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and surface-enhanced infrared absorption spectroscopy (SEIRA). In the presence of hydrogen peroxide, the synthesized composites were able to oxidize the colorless o-phenylenediamine (OPD) to a yellow colour 2, 3-diaminophenazine (DAP) with a better peroxidase-like activity than Fe3O4 alone. The obtained Km value of AgNPs@ Fe3O4 with H2O2 and OPD substrates are 28.0 mM and 2.91 mM respectively. These are substantially lower than previously reported values and indicate the strong binding affinity of the substrates towards AgNPs@ Fe3O4 nanocomposites. Based on the obstruction activity of cysteine on the peroxidase-like catalytic property of the nanocomposites, a sensor was developed for detection of cystein with a limit of detection as low as 87 nM and a wider range of linearity. The sensor also exhibited excellent selectivity against potentially interfering molecules.

Keywords: agnps fe3o4; activity; peroxidase like; microscopy

Journal Title: Analytica chimica acta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.