LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical detection of β-lactoglobulin based on a highly selective DNA aptamer and flower-like Au@BiVO4 microspheres.

Photo by nci from unsplash

Beta-lactoglobulin is a natural milk protein and the main cause of infant milk allergy. In this work, a sensitive, selective and inexpensive electrochemical biosensor for the detection of β-lactoglobulin was… Click to show full abstract

Beta-lactoglobulin is a natural milk protein and the main cause of infant milk allergy. In this work, a sensitive, selective and inexpensive electrochemical biosensor for the detection of β-lactoglobulin was developed. In this sensor, a DNA aptamer was used instead of an expensive antibody as the recognition group highly selective for β-lactoglobulin. The flower-like BiVO4 microspheres were firstly found to have peroxidase mimic catalytic activity and used to amplify the electrochemical signal. The aptamer can bind β-lactoglobulin and fall off from the working electrode, after which the DNA2/Au/BiVO4 probe can be fixed to the DNA1/AuNPs/ITO working electrode by the hybridization of DNA2 with DNA1. Therefore, a higher concentration of β-lactoglobulin leads to increased fabrication of the DNA2/Au/BiVO4 probe on the surface of the working electrode, and thereby increases the electrochemical signal. This electrochemical biosensor exhibited a wide detection range from 0.01 to 1000 ng mL-1, with a limit of detection (LOD) of 0.007 ng mL-1, which indicates a good potential application in the field of food analysis.

Keywords: dna aptamer; detection; bivo4; detection lactoglobulin

Journal Title: Analytica chimica acta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.