LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring the potential of combining chemometric approaches to model non-linear multi-way data with quantitative purposes - A case study.

Photo by campaign_creators from unsplash

Second-order based calibration methods have been widely investigated capitalizing on the inherent benefits of the data structure and the decomposition models, demonstrating that second-order advantage is a property that conspires… Click to show full abstract

Second-order based calibration methods have been widely investigated capitalizing on the inherent benefits of the data structure and the decomposition models, demonstrating that second-order advantage is a property that conspires to a high likelihood success in the resolution of systems of varying complexity. This work aims to demonstrate the applicability of a combined chemometric strategy to solve non-linear multivariate calibration systems in the presence of non-multilinear multi-way data. The determination of histamine by differential pulse voltammetry at different pH is presented as case study. The experimental system has the outstanding difficulty arisen from the large displacement along the potential axis by the pH, which was successfully overcome by implementation of the presented combined strategy. For data modeling, MCR-ALS, U-PLS/RBL and U-PCA/RBL-RBF were used. MCR-ALS allowed unraveling the non-linear behavior between the signal and the concentration, and extracting the underlying profiles of the constituent. Quantitative analysis was performed through the three models, and a comparative evaluation of the predictive performance was done. The best results were achieved with U-PCA/RBL-RBF (mean recovery = 101%) whereas, MCR-ALS yield the lowest mean recovery for all samples (70%).

Keywords: way data; multi way; non linear; case study

Journal Title: Analytica chimica acta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.