Forensic science requires a fast, sensitive, and anti-interfering imaging tool for on-site investigation and bio-analysis. The aggregation-induced emission (AIE) phenomenon exhibits remarkable luminescence properties (large Stokes shift, diverse molecular structures,… Click to show full abstract
Forensic science requires a fast, sensitive, and anti-interfering imaging tool for on-site investigation and bio-analysis. The aggregation-induced emission (AIE) phenomenon exhibits remarkable luminescence properties (large Stokes shift, diverse molecular structures, and high photo-stability), which can provide a viable solution for on-site analysis, while at the same time overcoming the problem of aggregation-caused quenching (ACQ). Based on the outstanding performance in chemical analysis and bio-sensing, AIE materials have great prospects in the field of forensic science. Therefore, the application of AIE in forensic science has been summarized for the first time in this article. After a brief introduction to the concept and development of AIE, its applications in the determination of toxic or hazardous substances, based on data on poisoning deaths, has been summarized. Subsequently, besides the bio-imaging function, other applications of AIE in analyzing markers related to forensic genetics, forensic pathology, (focusing on the corpse) and clinical forensics (focusing on the living) have been discussed. In addition, applications of AIE molecules in criminal investigations, including recognition of fingerprints and blood stains, detection of explosives and chemical warfare agents, and anti-counterfeiting have also been presented. It is hoped that this review will light up the future of forensic science by stimulating more research work on the suitability of AIE materials in advancing forensic science.
               
Click one of the above tabs to view related content.