LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Specific and robust hybridization based on double-stranded nucleic acids with single-base resolution.

Photo from wikipedia

Nucleic acid hybridization plays a critical role in medical diagnostics and nanotechnology, but its selectivity and robustness remain to be improved. Here, focusing on double-stranded nucleic acid-based hybridization, we present… Click to show full abstract

Nucleic acid hybridization plays a critical role in medical diagnostics and nanotechnology, but its selectivity and robustness remain to be improved. Here, focusing on double-stranded nucleic acid-based hybridization, we present a series of related strategies. Above all, two simple strategies for enriching toehold-included double-stranded nucleic acids have been proposed. On this basis, two universal hybridization methods with higher selectivity than typical toehold exchange reaction and a long target detection method using short probes to extend the detectable length range are realized. We also provide a double-stranded nucleic acids-catalyzed cycle amplification reaction to improve sensitivity, which has superior interference resistance and excellent discrimination for single-base mismatches. Besides, double-stranded nucleic acids with forked toeholds are used as essential elements to construct a series of logic gates that can evaluate different input combinations. Given the unique advantages of double-stranded nucleic acids, we expect the current work to advance the application of double-stranded nucleic acid-based hybridization in medical diagnostics and nanotechnology.

Keywords: hybridization; double stranded; nucleic acids; stranded nucleic; nanotechnology; single base

Journal Title: Analytica chimica acta
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.