LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automated Segmentation of Tissues Using CT and MRI: A Systematic Review.

RATIONALE AND OBJECTIVES The automated segmentation of organs and tissues throughout the body using computed tomography and magnetic resonance imaging has been rapidly increasing. Research into many medical conditions has… Click to show full abstract

RATIONALE AND OBJECTIVES The automated segmentation of organs and tissues throughout the body using computed tomography and magnetic resonance imaging has been rapidly increasing. Research into many medical conditions has benefited greatly from these approaches by allowing the development of more rapid and reproducible quantitative imaging markers. These markers have been used to help diagnose disease, determine prognosis, select patients for therapy, and follow responses to therapy. Because some of these tools are now transitioning from research environments to clinical practice, it is important for radiologists to become familiar with various methods used for automated segmentation. MATERIALS AND METHODS The Radiology Research Alliance of the Association of University Radiologists convened an Automated Segmentation Task Force to conduct a systematic review of the peer-reviewed literature on this topic. RESULTS The systematic review presented here includes 408 studies and discusses various approaches to automated segmentation using computed tomography and magnetic resonance imaging for neurologic, thoracic, abdominal, musculoskeletal, and breast imaging applications. CONCLUSION These insights should help prepare radiologists to better evaluate automated segmentation tools and apply them not only to research, but eventually to clinical practice.

Keywords: research; segmentation; systematic review; radiology; automated segmentation

Journal Title: Academic radiology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.