LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pneumonia Detection in Chest X-Ray Dose-Equivalent CT: Impact of Dose Reduction on Detectability by Artificial Intelligence.

Photo from wikipedia

RATIONALE AND OBJECTIVES There has been a significant increase of immunocompromised patients in recent years due to new treatment modalities for previously fatal diseases. This comes at the cost of… Click to show full abstract

RATIONALE AND OBJECTIVES There has been a significant increase of immunocompromised patients in recent years due to new treatment modalities for previously fatal diseases. This comes at the cost of an elevated risk for infectious diseases, most notably pathogens affecting the respiratory tract. Because early diagnosis and treatment of pneumonia can help reducing morbidity and mortality, we assessed the performance of a deep neural network in the detection of pulmonary infection in chest X-ray dose-equivalent computed tomography (CT). MATERIALS AND METHODS The 100 patients included in this retrospective study were referred to our department for suspicion of pulmonary infection and/or follow-up of known pulmonary nodules. Every patient was scanned with a standard dose (1.43 ± 0.54 mSv) and a 20 times dose-reduced (0.07 ± 0.03 mSv) CT protocol. We trained a deep neural network to perform binary classification (pulmonary consolidation present or not) and assessed diagnostic performance on both standard dose and reduced dose CT images. RESULTS The areas under the curve of the deep learning algorithm for the standard dose CT was 0.923 (confidence interval [CI] 95%: 0.905-0.941) and significantly higher than the areas under the curve (0.881, CI 95%: 0.859-0.903) of the reduced dose CT (p = 0.001). Sensitivity and specificity of the standard dose CT was 82.9% and 93.8%, and of the reduced dose CT 71.0% and 93.3%. CONCLUSION Pneumonia detection with X-ray dose-equivalent CT using artificial intelligence is feasible and may contribute to a more robust and reproducible diagnostic performance. Dose reduction lowered the performance of the deep neural network, which calls for optimization and adaption of CT protocols when using AI algorithms at reduced doses.

Keywords: detection; dose equivalent; ray dose; chest ray; pneumonia

Journal Title: Academic radiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.