Abstract The present article investigates experimentally and numerically the ignition and flame stability of high-density polyethylene solid fuel with incoming swirling air through a solid fuel ramjet (SFRJ). A new… Click to show full abstract
Abstract The present article investigates experimentally and numerically the ignition and flame stability of high-density polyethylene solid fuel with incoming swirling air through a solid fuel ramjet (SFRJ). A new design of swirler is proposed and used in this work. Experiments on connected pipes test facility were performed for SFRJ with and without swirl. An in-house code has been developed to simulate unsteady, turbulent, reacting, swirling flow in the SFRJ. Four different swirl intensities are utilized to study experimentally and numerically the effect of swirl number on the transient regression, ignition of the solid fuel in a hot-oxidizing flow and combustion phenomenon in the SFRJ. The results showed that using swirl flow decreases the ignition time delay, recirculation zone length, and the distance between the flame and the wall, meanwhile, increases the residence time, heat transfer, regression rate and mixing degree, thus, improving the combustion efficiency and stability.
               
Click one of the above tabs to view related content.