LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On guided wave propagation in fully clamped porous functionally graded nanoplates

Photo from wikipedia

Abstract The study on bulk waves in nanoplates has been done for several times in recent years, but guided waves have not been investigated yet. This paper is focused on… Click to show full abstract

Abstract The study on bulk waves in nanoplates has been done for several times in recent years, but guided waves have not been investigated yet. This paper is focused on the size-dependent guided wave propagation in mounted nanoplates made of porous functionally graded materials. To capture the size-dependent and shear effects, the first-order shear deformation theory and nonlocal elasticity theory are used to model the nanoplate. Porosity-dependent material properties of functionally graded nanoplate are defined via a modified power-law function. Governing equations were derived by using Hamilton's principle and are solved analytically to obtain wave frequencies and phase velocities. It is the first time that the presented model is used for studying guided wave propagation in fully clamped functionally graded nanoplates with porosities. In this research, wave frequencies as well as phase velocities of a fully clamped porous functionally graded nanoplate incorporating the effects of length-to-thickness ratio, aspect ratio, porosities, material gradation, nonlocal parameter, elastic foundation parameters and wave number are studied in detail.

Keywords: porous functionally; functionally graded; wave propagation; fully clamped; guided wave

Journal Title: Acta Astronautica
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.