LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance of EDT system for deorbit devices using new materials

Photo from archive.org

Abstract A deorbit device is required for some microsatellites to meet space debris mitigation guidelines, although very challenging in terms of limited resources and reliability. Many groups are conducting research… Click to show full abstract

Abstract A deorbit device is required for some microsatellites to meet space debris mitigation guidelines, although very challenging in terms of limited resources and reliability. Many groups are conducting research on post-mission disposal (PMD) devices using an electrodynamic tether (EDT) due to its high efficiency and simplicity. Since an EDT for microsatellites must be lightweight, with some strength, high conductivity, high survivability, and meet other requirements, such new materials as carbon nanotube yarn, metal-plated fiber, and metal-deposited thin film are assumed for a tape type tether. In order to determine the appropriate EDT dimensions such as tether width and length, the deorbit capabilities must be evaluated by numerical simulations in advance, as the thrust obtained varies depending on the EDT dimensions, orbital parameters, and other factors. The required resources of the EDT system such as mass and electric power can then be obtained for each orbit, satellite, and deorbit time. Thus, several prototypes of tape type tethers were made and evaluated in various tests.

Keywords: edt system; new materials; devices using; edt; deorbit

Journal Title: Acta Astronautica
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.