LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of neutron energy on asteroid deflection performance

Photo from wikipedia

Abstract In the future, a hazardous asteroid will find itself on a collision course with Earth. For asteroids of moderate size or larger, a nuclear device is one of humanity’s… Click to show full abstract

Abstract In the future, a hazardous asteroid will find itself on a collision course with Earth. For asteroids of moderate size or larger, a nuclear device is one of humanity’s only technologies capable of mitigating this threat via deflection on a timescale of less than a decade. This work examined how the output neutron energy from a nuclear device standoff detonation affects the deflection of a notional asteroid that is 300 meters in diameter and composed of silicon dioxide at a bulk density of 1.855 g/cm 3 . 14.1 MeV and 1 MeV neutron energy sources were modeled in MCNP to quantify the energy deposition in the asteroid target. The asteroid’s irradiated region was discretized in angle by tracing the rays emanating from the point of detonation and in depth by considering the neutron mean-free-paths. This high-fidelity approach was shown to deviate from previous analytic approximations commonly used for asteroid energy deposition. 50 kt and 1 Mt neutron yields of the energy deposition mappings were imported into a hydrodynamic asteroid model in ALE3D to simulate the deflective response due to blow-off ejecta. Underexplored in literature, changing the neutron energy was found to have up to a 70% impact on deflection performance due to induced differences in the energy deposition profile and in the energy coupling efficiency. The magnitude of energy deposition accounted for most of the observed variation in the asteroid velocity change, making the coupling efficiency more significant than the spatial profile characteristics. These findings are vital for determining the optimal source neutron energy spectrum for asteroid deflection applications.

Keywords: deflection; energy deposition; energy; neutron energy

Journal Title: Acta Astronautica
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.