LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars

Photo by karan_suthar_ from unsplash

Abstract Uniaxial compression tests were carried out on micro-pillars fabricated from nanolaminated graphene (reduced graphene oxide, RGO)-Al composites of different RGO concentrations and laminate orientations (the angle between laminate planes… Click to show full abstract

Abstract Uniaxial compression tests were carried out on micro-pillars fabricated from nanolaminated graphene (reduced graphene oxide, RGO)-Al composites of different RGO concentrations and laminate orientations (the angle between laminate planes and the pillar axis). It was found that the strengthening capability of RGO can be enhanced by either orienting the RGO layers parallel with the loading direction or raising the RGO concentration. The stress–strain response of the micro-pillars was populated with discrete bursts, and the stress increments of the bursts scaled with the RGO concentration, regardless of the laminate orientation relative to the loading direction. These observations were interpreted by the variation in the load-bearing capacity of RGO in different laminate orientations, the dislocation annihilation at the RGO/Al interface, and a crack deflection mechanism provided by the robust RGO/Al interface that toughened the composites. This work underscores the importance of structural design and control in the stiffening, strengthening, and toughening of metal matrix composites, and the methodology developed may be applied to other composites with microstructural heterogeneity to probe their specific mechanical behaviors and structure-property correlations.

Keywords: rgo; toughening mechanisms; strengthening toughening; graphene; micro pillars

Journal Title: Acta Materialia
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.