LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Small-volume aluminum alloys with native oxide shell deliver unprecedented strength and toughness

Photo from wikipedia

Abstract Mechanically robust nanoscale metallic materials are highly desirable in many miniaturized devices. However, the lack of strain hardening and controllable plasticity plagues such small-volume metals. Using Al-4Cu alloy as… Click to show full abstract

Abstract Mechanically robust nanoscale metallic materials are highly desirable in many miniaturized devices. However, the lack of strain hardening and controllable plasticity plagues such small-volume metals. Using Al-4Cu alloy as an example, here we show that a submicron-sized metallic material with ultrathin native oxide shell exhibits a high degree of deformation controllability, unprecedented strain hardening, size strengthening and toughness, in uniaxial tensile deformation. The metal/native oxide “composite” is easy to make, and the emergent properties extend well beyond the benchmark range known for metals in a normalized (i.e., dimensionless) strength-toughness plot. The origin of the combination of strengthening and plastic stability is that an intact ultrathin native oxide shell exerts a strong confinement on dislocation movement and annihilation, thereby breaking the envelope on dislocation storage and strain hardening achievable in small-volume metals.

Keywords: native oxide; small volume; oxide shell

Journal Title: Acta Materialia
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.