LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A computational study of yttria-stabilized zirconia: II. Cation diffusion

Photo from wikipedia

Abstract Cubic yttria-stabilized zirconia is widely used in industrial electrochemical devices. While its fast oxygen ion diffusion is well understood, why cation diffusion is much slower—its activation energy (∼5 eV) is… Click to show full abstract

Abstract Cubic yttria-stabilized zirconia is widely used in industrial electrochemical devices. While its fast oxygen ion diffusion is well understood, why cation diffusion is much slower—its activation energy (∼5 eV) is 10 times that of anion diffusion—remains a mystery. Indeed, all previous computational studies predicted more than 5 eV is needed for forming a cation defect, and another 5 eV for moving one. In contrast, our ab initio calculations have correctly predicted the experimentally observed cation diffusivity. We found Schottky pairs are the dominant defects that provide cation vacancies, and their local environments and migrating path are dictated by packing preferences. As a cation exchanges position with a neighboring vacancy, it passes by an empty interstitial site and severely displaces two oxygen neighbors with shortened Zr-O distances. This causes a short-range repulsion against the migrating cation and a long-range disturbance of the surrounding, which explains why cation diffusion is relatively difficult. In comparison, cubic zirconia's migrating oxygen only minimally disturbs neighboring Zr, which explains why it is a fast oxygen conductor.

Keywords: cation; diffusion; cation diffusion; computational study; stabilized zirconia; yttria stabilized

Journal Title: Acta Materialia
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.