LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium-vanadium alloy

Photo from wikipedia

Abstract Morphological and compositional evolution of omega (ω) precipitates in a model Titanium-20 wt%Vanadium (or 19 at.%V) alloy has been systematically investigated by coupling transmission electron microscopy and atom probe tomography with… Click to show full abstract

Abstract Morphological and compositional evolution of omega (ω) precipitates in a model Titanium-20 wt%Vanadium (or 19 at.%V) alloy has been systematically investigated by coupling transmission electron microscopy and atom probe tomography with atomistic ab initio and continuum microelasticity computations. The initial water quenched microstructure comprised of a fine scale distribution of athermal ω precipitates, which form congruently from the β phase via a complete displacive collapse of {222} β planes, that has been rationalized based on DFT computations. Subsequent annealing at 300 °C, over progressively increasing time periods, resulted in isothermal evolution of the ω precipitates, whose morphology changes from ellipsoidal to cuboidal, accompanied with V rejection. The highly V-enriched β matrix consisted of short V V bond lengths, further distorting the bcc lattice, and increasing the β/ω misfit. This facilitates the change in the morphology of omega precipitates from ellipsoidal to cuboidal resulting in a {001} β habit plane for these precipitates. The coupled experimental and computational approach permits rationalizing the evolution of ω precipitate morphology and composition in such high β−ω misfit β-Ti alloys.

Keywords: coupled experimental; evolution; misfit; experimental computational; titanium vanadium; vanadium alloy

Journal Title: Acta Materialia
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.