LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Competition between formation of carbides and reversed austenite during tempering of a medium-manganese steel studied by thermodynamic-kinetic simulations and atom probe tomography

Photo from wikipedia

Abstract We investigated the thermodynamics and kinetics of carbide precipitation in a cold-rolled Fe-7Mn-0.1C-0.5Si medium manganese steel during low temperature tempering. The material was annealed up to 24 h at 450 °C in… Click to show full abstract

Abstract We investigated the thermodynamics and kinetics of carbide precipitation in a cold-rolled Fe-7Mn-0.1C-0.5Si medium manganese steel during low temperature tempering. The material was annealed up to 24 h at 450 °C in order to follow the kinetics of precipitation. Using thermodynamics and kinetics simulations, we predicted the growth of M23C6 carbides according to the local-equilibrium negligible partition (LENP) mode where carbide growth is controlled by the diffusion of carbon, while maintaining local chemical equilibrium at the interface. Atom-probe tomography (APT) measurements performed on samples annealed for 1, 6 and 24 h at 450 °C confirmed that LENP is indeed the mode of carbide growth and that Mn segregation is necessary for the nucleation. Additionally, we observed the heterogeneous nucleation of transition carbides with a carbon content between 6 and 8 at% at segregated dislocations and grain boundaries. We describe these carbides as a complex face-centered cubic transition carbide type (CFCC-TmC phase) obtained by the supersaturation of the FCC structure by carbon that will act as precursor to the more stable γ-M23C6 carbide that forms at the dislocations and grain boundaries. The results suggest that the addition of carbon does not directly favor the formation of austenite, since Mn is consumed by the formation of the carbides and the nucleation of austenite is thus retarded to later stages of tempering as every FCC nucleus in the initial stages of tempering is readily converted into a carbide nucleus. We propose the following sequence of transformation: (i) carbon and Mn co-segregation to dislocations and grain boundaries; (ii) formation of FCC transition carbides; (iii) growth controlled according to the LENP mode and (iv) austenite nucleation and growth.

Keywords: atom probe; manganese steel; formation; probe tomography; growth; medium manganese

Journal Title: Acta Materialia
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.