LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sulfur – induced embrittlement in high-purity, polycrystalline copper

Photo from wikipedia

Abstract Tensile tests were carried out in high-purity, polycrystalline copper alloys with three concentrations of sulfur impurities (14, 27 and 7920 at ppm) at temperatures between 20 °C and 400 °C. The ductility drops… Click to show full abstract

Abstract Tensile tests were carried out in high-purity, polycrystalline copper alloys with three concentrations of sulfur impurities (14, 27 and 7920 at ppm) at temperatures between 20 °C and 400 °C. The ductility drops with increasing sulfur concentration and temperature while the ultimate tensile strength increases. The alloys exhibit a grain size of several millimeters and contain mostly random grain boundaries (GBs). The microstructure and composition is investigated by transmission electron microscopy (TEM) and atom probe tomography (APT). The microstructure of the samples with sulfur contents of 14 and 27 ppm consists of globular grains and neither of the microanalytical techniques employed reveals the formation of Cu-sulfides or sulfur segregation to GBs. Even after annealing at 500 °C, no sulfide formation or sulfur segregation to GBs was detected. In the alloy with a sulfur content of 7920 ppm, a dendritic structure is observed and in the interdendritic region monoclinic Cu2S precipitates with a size range from 5 nm to several μm are observed at GBs and also within the grains. The influence of S on the ductility is discussed considering the TEM and APT results.

Keywords: polycrystalline copper; purity polycrystalline; sulfur; high purity

Journal Title: Acta Materialia
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.