LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deformation characteristics of ultrafine grained and nanocrystalline iron and pearlitic steel - An in situ synchrotron investigation

Photo by eriic from unsplash

Abstract The deformation characteristics of ultrafine grained (UFG) iron, ultrafine lamellar (UFL) pearlite and nanolamellar (NL) pearlite were investigated using in situ synchrotron compression tests. The direct measurement of the… Click to show full abstract

Abstract The deformation characteristics of ultrafine grained (UFG) iron, ultrafine lamellar (UFL) pearlite and nanolamellar (NL) pearlite were investigated using in situ synchrotron compression tests. The direct measurement of the peak position and peak width of the transmitted diffraction rings provided insights into the correlation between the strain hardening and the evolution of coherent domain size and dislocation density. The results showed that the hard cementite supported the initial hardening in UFL pearlite, while the dislocation density in the ferrite lamellae gradually increased. At higher stresses, the cementite lamellae deformed plastically or fractured, thus transferring the hardening process to the ferrite lamellae. On the other hand, in UFG iron and NL pearlite an initial high strain hardening was observed due to strain path change and redistribution of dislocations. The nanolamellar structure of pearlite further introduced a strong anisotropy in yield behavior, without affecting the hardening characteristics of ferrite lamellae. The physical origin of the anisotropy in flow behavior of NL pearlite was identified as the importance of shear stress on dislocation motion within the ferrite nanolamellae.

Keywords: ultrafine grained; characteristics ultrafine; iron; deformation characteristics; situ synchrotron

Journal Title: Acta Materialia
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.