LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amorphous nickel nanophases inducing ferromagnetism in equiatomic Ni Ti alloy

Photo from archive.org

Abstract Ni50Ti50 nm-sized amorphous particles are prepared using inert-gas condensation followed by in situ compaction. Elemental segregation of Ni and Ti is observed in the consolidated nanostructured material. Amorphous, nearly pure… Click to show full abstract

Abstract Ni50Ti50 nm-sized amorphous particles are prepared using inert-gas condensation followed by in situ compaction. Elemental segregation of Ni and Ti is observed in the consolidated nanostructured material. Amorphous, nearly pure Nickel (96%) nanophases form within the amorphous Ni50Ti50 alloy. Combining atom probe tomography and scanning transmission electron microscopy with computer modelling, we explore the formation process of such amorphous nanophase structure. It is shown that the Ni rich amorphous phase in the consolidated nanostructured material is responsible for the ferromagnetic behavior of the sample whereas the rapidly quenched amorphous and crystalline samples with the same chemical composition (Ni50Ti50) were found to be paramagnetic. Due to the high cooling rate obtained using the inert gas condensation technique, an exceptional control over the crystallization processes is possible, promoting the formation of various amorphous phases, which are not obtained by standard rapid quenching techniques. Our findings demonstrate the potential of amorphous metallic nanostructures as advanced technological materials, and useful magnetic compounds.

Keywords: alloy; amorphous nickel; nickel nanophases; ferromagnetism equiatomic; nanophases inducing; inducing ferromagnetism

Journal Title: Acta Materialia
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.