LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Martensite to austenite reversion in a high-Mn steel: Partitioning-dependent two-stage kinetics revealed by atom probe tomography, in-situ magnetic measurements and simulation

Photo by davidhellmann from unsplash

Abstract Austenite (γ) reversion in a cold-rolled 17.6 wt.% Mn steel was tracked by means of dilatometry and in-situ magnetic measurements during slow continuous annealing. A splitting of the γ-reversion into… Click to show full abstract

Abstract Austenite (γ) reversion in a cold-rolled 17.6 wt.% Mn steel was tracked by means of dilatometry and in-situ magnetic measurements during slow continuous annealing. A splitting of the γ-reversion into two stages was observed to be a result of strong elemental partitioning between γ and α′-martensite during the low temperature stage between 390 and 575 °C. Atom probe tomography (APT) results enable the characterization of the Mn-enriched reversed-γ and the Mn-depleted remaining α′-martensite. Because of its lower Mn content, the reversion of the remaining α′-martensite into austenite takes place at a higher temperature range between 600 and 685 °C. APT results agree with partitioning predictions made by thermo-kinetic simulations of the continuous annealing process. The critical composition for γ-nucleation was predicted by thermodynamic calculations (Thermo-Calc) and a good agreement was found with the APT data. Additional thermo-kinetic simulations were conducted to evaluate partitioning-governed γ-growth during isothermal annealing at 500 °C and 600 °C. Si partitioning to γ was predicted by DICTRA and confirmed by APT. Si accumulates near the moving interface during γ-growth and homogenizes over time. We used the chemical composition of the remaining α′-martensite from APT data to calculate its Curie temperature (TCurie) and found good agreement with magnetic measurements. These results indicate that elemental partitioning strongly influences not only γ-reversion but also the TCurie of this steel. The results are important to better understand the thermodynamics and kinetics of austenite reversion for a wide range of Mn containing steels and its effect on magnetic properties.

Keywords: steel; magnetic measurements; austenite reversion; atom probe; situ magnetic; reversion

Journal Title: Acta Materialia
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.