LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flaw-free nanoporous Ni for tensile properties

Photo from wikipedia

Abstract Dealloyed nanoporous metals are emerging as a new class of structural and functional materials for a wide range of applications. Nevertheless, the dealloying process usually leads to significant volume… Click to show full abstract

Abstract Dealloyed nanoporous metals are emerging as a new class of structural and functional materials for a wide range of applications. Nevertheless, the dealloying process usually leads to significant volume shrinkage, large internal stresses, surface oxidation, stress-corrosion cracking and thereby extensive fabrication flaws. This is particularly serious for nanoporous non-noble metals because of their high affinity with oxygen and resulting serious oxidation. Therefore, dealloyed nanoporous metals usually have poor mechanical performances, particularly, under tension which is highly sensitive to flaws. Consequently, high tensile strength has not been achieved from technically-important and economic nanoporous transition metals, such as Ni and Cu. In this study we report flaw-free nanoporous Ni fabricated by utilizing an ultrafine grained precursor alloy, high-temperature dealloying and post-dealloying annealing. The resulting nanoporous Ni shows an excellent tensile strength, which is one order of magnitude higher than all reported tensile strengths of dealloyed nanoporous metals. The strong and ductile nanoporous Ni developed in this study can be scaled up for large-scale structural and functional applications where tensile properties are required.

Keywords: tensile properties; flaw free; free nanoporous; dealloyed nanoporous; nanoporous metals

Journal Title: Acta Materialia
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.