Abstract A gradient nanostructured (GNS) surface layer was induced on coarse-grained (CG) Cu and CuAl alloys by means of surface mechanical grinding treatment. The GNS/CG Cu-4.5Al sample subjected to tensile… Click to show full abstract
Abstract A gradient nanostructured (GNS) surface layer was induced on coarse-grained (CG) Cu and CuAl alloys by means of surface mechanical grinding treatment. The GNS/CG Cu-4.5Al sample subjected to tensile tests yields at a higher strength and fails at a higher uniform elongation (∼42%) in comparison with the GNS/CG Cu and Cu-2.2Al samples. The microstructures of the GNS/CG samples before and after tension at different strains were systematically investigated by transmission electron microscope. It is revealed that grain coarsening dominates the plastic deformation of nanograins in the GNS/CG Cu sample while the propensity of deformation twinning in nanograins increases in the GNS/CG CuAl samples. The experimental results suggested a transition of deformation mechanism of nanograins from grain coarsening to the partial dislocation associated deformation twinning in the GNS/CG Cu and CuAl alloys with increasing Al solute concentration. The obvious activation of deformation twinning accommodates the large tensile plasticity of the surface nanograins in the GNS/CG Cu-4.5Al sample. This work demonstrated that the partial dislocation associated deformation twinning is an effective deformation mechanism to retard the strain localization and to improve the tensile ductility of nanograins.
               
Click one of the above tabs to view related content.