LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Towards understanding grain nucleation under Additive Manufacturing solidification conditions

Photo from wikipedia

Abstract This paper provides insights into the effect of high thermal gradients and cooling rates on equiaxed grain nucleation and growth in conditions similar to those experienced during Additive Manufacturing… Click to show full abstract

Abstract This paper provides insights into the effect of high thermal gradients and cooling rates on equiaxed grain nucleation and growth in conditions similar to those experienced during Additive Manufacturing (AM) processes. Bridgman type solidification is numerically simulated with columnar grains growing at a fixed pull rate under a user-imposed thermal gradient. Controlled inoculants of known nucleation undercooling were placed ahead of the growing columnar grains to allow quantitative analysis of nucleation events. At low thermal gradient and cooling rate only the inoculants with low nucleation undercooling were activated due to low melt undercooling driven by constitutional supercooling (CS). As the cooling rate is increased, for a given thermal gradient, a larger number of inoculants with higher nucleation undercoolings were activated. At higher cooling rates, thermal undercooling was generated by a lag in the growth rate of the solid-liquid (S-L) interface compared to the theoretical pull rate. Thus, thermal undercooling becomes dominant leading to the facilitation of nucleation on less potent substrates requiring higher undercooling. The results show a transition from solute-driven undercooling to cooling rate driven thermal undercooling which contributes to the undercooling that activates the nucleation events. Invoking the Interdependence model, it is also shown that the high cooling rate induced thermal undercooling reduces the size of the nucleation free zone substantially.

Keywords: nucleation; thermal undercooling; grain nucleation; additive manufacturing; rate; cooling rate

Journal Title: Acta Materialia
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.