LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Mo on the mechanical behavior of γ/γʹ-strengthened Co-Ti-based alloys

Photo from archive.org

Abstract We investigated the flow behavior of γ/γʹ-strengthened Co-12Ti and Co-12Ti-4Mo (at.%) alloys at room and elevated temperatures (up to 900°C) by electron microscopy and density functional theory. The Mo-added… Click to show full abstract

Abstract We investigated the flow behavior of γ/γʹ-strengthened Co-12Ti and Co-12Ti-4Mo (at.%) alloys at room and elevated temperatures (up to 900°C) by electron microscopy and density functional theory. The Mo-added alloy exhibited an enhanced compressive yield strength and strain hardening behavior as compared to the reference binary alloy. This behavior could be attributed to a ~25% larger γʹ volume fraction and ~7% higher planar fault energies in Co-12Ti-4Mo. Using electron channeling contrast imaging, we observed interrupted slip bands in the Co-12Ti-4Mo alloy deformed to a strain of 6%, which led to enhanced strain hardening, in contrast to extended slip bands along {111} planes in the Co-12Ti alloy. Interrupted slip band formation in Co-12Ti-4Mo could be explained by rapid exhaustion of dislocation sources and a higher energy barrier required to cut the γʹ precipitates. These effects are due to a reduced γ channel width and substantial hardening effect of γʹ-Co3(Ti,Mo) in the ternary alloy as well as due to the large shear modulus difference between γʹ and γ.

Keywords: alloy; effects mechanical; mechanical behavior; behavior strengthened; 12ti 4mo; behavior

Journal Title: Acta Materialia
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.