LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High performance and low thermal expansion in Er-Fe-V-Mo dual-phase alloys

Photo from wikipedia

Abstract Low thermal expansion alloy plays a unique role in high precision instruments and devices owing to its size stability under thermal shocks. However, a low thermal expansion generally produces… Click to show full abstract

Abstract Low thermal expansion alloy plays a unique role in high precision instruments and devices owing to its size stability under thermal shocks. However, a low thermal expansion generally produces a poor mechanical performance, such as brittleness and low fracture resistance, which is a bottle-neck for their applications as functional materials. Here, we demonstrate a novel intermetallic compound-based dual-phase alloy of Er-Fe-V-Mo with excellent structural and functional integrity achieved by precipitating a ductile phase in the hard-intermetallic matrix with large magnetovolume effect. It is found that the compound with 12.8 ± 0.1vol% precipitate phase improves the alloy's strength and toughness by one order of magnitude, while keeping a low bulk coefficient of thermal expansion (1.87±0.02 × 10−6 K − 1) over a wide temperature range (100 to 493 K). The combined analyses of real-time in-situ neutron diffraction, synchrotron X-ray diffraction, and microscopy reveal that both the thermal expansion and the mechanical properties of the precipitate phase are coupled with the matrix phase via semi-coherent interfacial constraint; more importantly, the precipitate phase undergoes a pronounced strain hardening with dislocation slips, which relieves the stress localization and thus hinders the microcrack propagation in the intermetallic matrix. Moreover, the alloys are easy to fabricate and stable during thermal cycling with great application potentials. This study shed light on the development of low thermal expansion alloys as well as the implications to other high-performance intermetallic-compound-based material design.

Keywords: phase; performance; low thermal; thermal expansion; dual phase

Journal Title: Acta Materialia
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.