Abstract Grain boundary cracking in non-weldable superalloy fabricated with selective electron beam melting is affected by the interaction of multiple factors including mechanical and compositional effects. In this study, we… Click to show full abstract
Abstract Grain boundary cracking in non-weldable superalloy fabricated with selective electron beam melting is affected by the interaction of multiple factors including mechanical and compositional effects. In this study, we construct process maps in a wide range high-dimensional parameter space for the non-weldable superalloy Alloy713ELC through employing a machine learning approach, and we could fabricate many cracked and crack-free samples under the optimized conditions by excluding the extrinsic effect of process defects on cracking. Comparing between cracked and crack-free samples reveals that the samples with fine columnar grains can be cracked while those with coarse columnar grains can be crack-free, and that the cracking propensity in the optimized samples within a process window with scan speed ≤ 800 mm/s can be ranked by using a quasi-total plastic strain index (QTPSI), which is calculated via thermo-mechanical analysis. The total plastic strain level is a critical cracking factor and a larger scan speed tends to elevate the total plastic strain level, exhibiting a larger deviation beyond the QTPSI. Besides, the non-weldability in Alloy713ELC significantly attributes to its thermal expansion effect, which correlates to the large Al content. This thermal expansion effect combined with the liquation effect and the strain-age cracking effect reveals the intrinsic cause of non-weldability in Alloy713ELC.
               
Click one of the above tabs to view related content.