The digenetic trematode, Gigantocotyle explanatum infecting the liver of Indian water buffalo, Bubalus bubalis, has been identified as one of the most common helminth parasite responsible for the disease, amphistomosis,… Click to show full abstract
The digenetic trematode, Gigantocotyle explanatum infecting the liver of Indian water buffalo, Bubalus bubalis, has been identified as one of the most common helminth parasite responsible for the disease, amphistomosis, in livestock. The foodborne trematodiases in tropical and sub-tropical regions have been recognized as the neglected tropical diseases by the World Health Organization. Despite huge abattoir prevalence, the epidemiological data and the actual economic losses incurred due to this parasite alone are yet to be established probably due to the limitations of routinely used diagnostic tests. The gold standard for the confirmation of such infections under field conditions is still the fecal egg count (FEC). However, the poor sensitivity and cumbersome nature of these tests necessitates the development of a more sensitive, reliable and easy to perform workflow method. Immunological diagnosis of helminthic infections is still considered as an alternative to the FEC. Therefore, efforts have been made to utilize glutathione-S-transferase (GST), a vitally significant molecule of the adult G. explanatum, for the serodiagnosis of amphistomosis under both laboratory and field conditions. The GST antigen was first affinity purified from the somatic extract of the adult worms since its highest level was recorded in the somatic extracts followed by eggs and the excretory/secretory products. A five-fold affinity purified native GST antigen of 25 kDa was found to be highly immunogenic as evident from high titre (1:25,600) of the polyclonal antibodies raised in the rabbits. The immunoblotting results revealed differential presence of GST in the adult worms, their eggs and excretory/secretory products. The immunolocalization studies revealed that the vitelline glands are the major source of GST in liver amphistome. Further, we were able to successfully screen animals naturally infected with G. explanatum using anti GST polyclonal antibodies in dot blot assay. High levels of both circulating GST antigen and anti GST antibodies were detected in the serum of the animals naturally infected with G. explanatum, while no cross reactivity was observed with the tropical liver fluke, F. gigantica which often infects the buffalo liver concurrently with G. explanatum, clearly indicates that GST could be used as a potential diagnostic molecule for the detection of G. explanatum infection in Indian water buffaloes.
               
Click one of the above tabs to view related content.