LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting patient exposure to nickel released from cardiovascular devices using multi-scale modeling.

Photo from wikipedia

Many cardiovascular device alloys contain nickel, which if released in sufficient quantities, can lead to adverse health effects. However, in-vivo nickel release from implanted devices and subsequent biodistribution of nickel… Click to show full abstract

Many cardiovascular device alloys contain nickel, which if released in sufficient quantities, can lead to adverse health effects. However, in-vivo nickel release from implanted devices and subsequent biodistribution of nickel ions to local tissues and systemic circulation are not well understood. To address this uncertainty, we have developed a multi-scale (material, tissue, and system) biokinetic model. The model links nickel release from an implanted cardiovascular device to concentrations in peri-implant tissue, as well as in serum and urine, which can be readily monitored. The model was parameterized for a specific cardiovascular implant, nitinol septal occluders, using in-vitro nickel release test results, studies of ex-vivo uptake into heart tissue, and in-vivo and clinical measurements from the literature. Our results show that the model accurately predicts nickel concentrations in peri-implant tissue in an animal model and in serum and urine of septal occluder patients. The congruity of the model with these data suggests it may provide useful insight to establish nickel exposure limits and interpret biomonitoring data. Finally, we use the model to predict local and systemic nickel exposure due to passive release from nitinol devices produced using a wide range of manufacturing processes, as well as general relationships between release rate and exposure. These relationships suggest that peri-implant tissue and serum levels of nickel will remain below 5 μg/g and 10 μg/l, respectively, in patients who have received implanted nitinol cardiovascular devices provided the rate of nickel release per device surface area does not exceed 0.074 μg/(cm2 d) and is less than 32 μg/d in total. STATEMENT OF SIGNIFICANCE The uncertainty in whether in-vitro tests used to evaluate metal ion release from medical products are representative of clinical environments is one of the largest roadblocks to establishing the associated patient risk. We have developed and validated a multi-scale biokinetic model linking nickel release from cardiovascular devices in-vivo to both peri-implant and systemic levels. By providing clinically relevant exposure estimates, the model vastly improves the evaluation of risk posed to patients by the nickel contained within these devices. Our model is the first to address the potential for local and systemic metal ion exposure due to a medical device and can serve as a basis for future efforts aimed at other metal ions and biomedical products.

Keywords: exposure; model; nickel release; cardiovascular devices; multi scale; release

Journal Title: Acta biomaterialia
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.