LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular dynamics simulations of adsorption and desorption of bone morphogenetic protein-2 on textured hydroxyapatite surfaces.

Photo by syahrilfdilla_id from unsplash

Interactions between bone morphogenetic protein-2 (BMP-2) and biomaterial surfaces are of great significance in the fields of regenerative medicine and bone tissue engineering. In this work, the adsorption and desorption… Click to show full abstract

Interactions between bone morphogenetic protein-2 (BMP-2) and biomaterial surfaces are of great significance in the fields of regenerative medicine and bone tissue engineering. In this work, the adsorption and desorption behaviors of BMP-2 on a series of nano-textured hydroxyapatite (HAP) surfaces were systematically investigated by combined molecular dynamic (MD) simulations and steered molecular dynamic (SMD) simulations. The textured HAP surfaces exhibited nanostructured topographies and played a critical role in the mediation of dynamic behaviors of BMP-2. Compared to the HAP-flat model, the HAP-1:1 group (means ridge vs groove = 1:1) showed the excellent ability to capture BMP-2, less conformation change of BMP-2 molecule, and high cysteine-knot stability during the adsorption and desorption processes. These findings suggest that nano-textured HAP surfaces are more capable of loading BMP-2 molecules, and most importantly, they can help maintain a higher biological activity of BMP-2 cargos. In the present study, for the first time, we have deeply clarified the adsorption and desorption dynamics of BMP-2 on various nano-textured HAP surfaces at the atomic level, which can provide significant guidelines for the future design of BMP-2-based tissue engineering implants/scaffolds. STATEMENT OF SIGNIFICANCE: By using combined molecular dynamic (MD) simulations and steered molecular dynamic (SMD) simulations, the adsorption and desorption dynamics of bone morphogenetic protein-2 (BMP-2) dimer on a series of nano-textured hydroxyapatite (HAP) surfaces at the atomic level were presented in details for the first time. We have proved that the HAP-1:1 model (means ridge vs groove = 1:1) possessed excellent ability to capture BMP-2, less conformation change, and high cysteine-knot stability. As a result, the nano-textured topography of HAP-1:1 could maintain a relatively high biological activity of BMP-2 cargos. This work could provide theoretical guidelines for the design of BMP-2-based implants/scaffolds for bone tissue engineering.

Keywords: bmp; adsorption desorption; bone morphogenetic; morphogenetic protein; nano textured

Journal Title: Acta biomaterialia
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.