LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning the tribofilm nanostructures of polymer-on-metal joint replacements for simultaneously enhancing anti-wear performance and corrosion resistance.

Photo from wikipedia

Total joint replacement is currently the most successful clinical treatment for improving the life quality of individuals afflicted with end-stage osteoarthritis of knee or hip joints. However, release of wear… Click to show full abstract

Total joint replacement is currently the most successful clinical treatment for improving the life quality of individuals afflicted with end-stage osteoarthritis of knee or hip joints. However, release of wear and corrosion products from the prostheses is a critical issue causing adverse physiological responses of local issues. β-SiC nanoparticles were dispersed into polyetheretherketone (PEEK) materials and their role in tribocorrosion performance of PEEK-steel joints exposed to simulated body fluid was investigated. It is demonstrated that β-SiC nanoparticles increase greatly the wear resistance of the PEEK materials, and meanwhile mitigate significantly corrosion of the steel counterpart. It is revealed that tribochemical reactions of β-SiC nanoparticles promoted formation of a robust tribofilm having complex structures providing protection and shielding effects. The present work proposes a strategy for developing high-performance polymer-on-metal joint replacement materials of enhanced lifespan and biocompatibility via tuning interface nanostructures. STATEMENT OF SIGNIFICANCE: Adverse tissue responses to metal wear and corrosion products from metal base implants remain a challenge to surgeons and patients. We demonstrated that leaching of metal ions and release of metallic debris are well decreased via tuning interface nanostructures of metal-polymer joint bearings by dispersing β-SiC nanoparticles into polyetheretherketone (PEEK). It is identified that the addition of β-SiC greatly improves the tribological performances of the PEEK materials and mitigated corrosion of the steel. Tribo-chemistry reactions of SiC induce the formation of complex structures which provide protection and shielding effects. Nanostructures of the tribofilm were also comprehensively investigated. These novel findings proposed a potential route for designing high performance metal-polymer joint replacement materials.

Keywords: corrosion; performance; metal joint; sic nanoparticles; polymer metal

Journal Title: Acta biomaterialia
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.