LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fibronectin fiber creep under constant force loading.

Photo by flairman from unsplash

Viscoelasticity is a fundamental property of virtually all biological materials, and proteinaceous, fibrous materials that constitute the extracellular matrix (ECM) are no exception. Viscoelasticity may be particularly important in the… Click to show full abstract

Viscoelasticity is a fundamental property of virtually all biological materials, and proteinaceous, fibrous materials that constitute the extracellular matrix (ECM) are no exception. Viscoelasticity may be particularly important in the ECM since cells can apply mechanical stress resulting from cell contractility over very long periods of time. However, measurements of ECM fiber response to long-term constant force loading are scarce, despite the increasing recognition that mechanical strain regulates the biological function of some ECM fibers. We developed a dual micropipette system that applies constant force to single fibers for up to 8 h. We utilized this system to study the time dependent response of fibronectin (Fn) fibers to constant force, as Fn fibers exhibit tremendous extensibility before mechanical failure as well as strain dependent alterations in biological properties. These data demonstrate the Fn fibers continue to stretch under constant force loading for at least 8 h and that this long-term creep results in plastic deformation of Fn fibers, in contrast to elastic deformation of Fn fibers under short-term, but fast loading rate extension. These data demonstrate that physiologically-relevant loading may impart mechanical features to Fn fibers by switching them into an extended state that may have altered biological functions. STATEMENT OF SIGNIFICANCE: Measurements of extracellular matrix (ECM) fiber response to constant force loading are scarce, so we developed a novel technique for applying constant force to single ECM fibers. We used this technique to measure constant force creep of fibronectin fibers since these fibers have been shown to be mechanotransducers whose functions can be altered by mechanical strain. We found that fibronectin fibers creep under constant force loading for the duration of the experiment and that this creep behavior resembles a power law. Furthermore, we found that constant force creep results in plastic deformation of the fibers, which suggests that the mechanobiological switching of fibronectin can only occur once after long-term loading.

Keywords: creep constant; force loading; constant force; force; ecm

Journal Title: Acta biomaterialia
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.