Stimulus-responsive nanosystem is a powerful method to improve the bioavailability and reduce the side effects of anticancer agents. In the present study, a customized dual pH-responsive micellar nanoplatform (DOX+LAP-M) based… Click to show full abstract
Stimulus-responsive nanosystem is a powerful method to improve the bioavailability and reduce the side effects of anticancer agents. In the present study, a customized dual pH-responsive micellar nanoplatform (DOX+LAP-M) based on polycarbonate-doxorubicin conjugate micelles was prepared to co-deliver the chemotherapeutic agent lapatinib for inhibiting tumor growth and metastasis. DOX+LAP-M micelles with spherical morphology had a size of ∼112 nm and had an initial negative surface charge, which are favorable characteristics for long-term circulation in the blood. Once the micelles accumulated in tumor tissues, the intrinsic tumor extracellular acidity triggered the charge switch of DOX+LAP-M micelles from -1 to 9 mV, thereby facilitating cell internalization and tumor penetration. Subsequently, the pH-sensitive micellar core accelerated the release of doxorubicin and lapatinib in the acidic intracellular environment. DOX+LAP-M micelles effectively inhibited the proliferation, migration, and invasion of 4T1 cells in vitro; furthermore, the administration of DOX+LAP-M micelles in 4T1 xenograft-bearing mice suppressed solid tumor growth with an inhibitory rate of 90.2% and significantly decreased pulmonary metastatic nodules, without significant systemic toxicity. This multifunctional micellar system has high potential for clinical cancer therapy.
               
Click one of the above tabs to view related content.