LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A versatile multicomponent mesoporous silica nanosystem with dual antimicrobial and osteogenic effects.

Photo from wikipedia

In this manuscript, we propose a simple and versatile methodology to design nanosystems based on biocompatible and multicomponent mesoporous silica nanoparticles (MSNs) for infection management. This strategy relies on the… Click to show full abstract

In this manuscript, we propose a simple and versatile methodology to design nanosystems based on biocompatible and multicomponent mesoporous silica nanoparticles (MSNs) for infection management. This strategy relies on the combination of antibiotic molecules and antimicrobial metal ions into the same nanosystem, affording a significant improvement of the antibiofilm effect compared to that of nanosystems carrying only one of these agents. The multicomponent nanosystem is based on MSNs externally functionalized with a polyamine dendrimer (MSN-G3) that favors internalization inside the bacteria and allows the complexation of multiactive metal ions (MSN-G3-Mn+). Importantly, the selection of both the antibiotic and the cation may be done depending on clinical needs. Herein, levofloxacin and Zn2+ ion, chosen owing to both its antimicrobial and osteogenic capability, have been incorporated. This dual biological role of Zn2+ could have and adjuvant effect thought destroying the biofilm in combination with the antibiotic as well as aid to the repair and regeneration of lost bone tissue associated to osteolysis during infection process. The versatility of the nanosystem has been demonstrated incorporating Ag+ ions in a reference nanosystem. In vitro antimicrobial assays in planktonic and biofilm state show a high antimicrobial efficacy due to the combined action of levofloxacin and Zn2+, achieving an antimicrobial efficacy above 99% compared to the MSNs containing only one of the microbicide agents. In vitro cell cultures with MC3T3-E1 preosteoblasts reveal the osteogenic capability of the nanosystem, showing a positive effect on osteoblastic differentiation while preserving the cell viability. STATEMENT OF SIGNIFICANCE: : A simple and versatile methodology to design biocompatible and multicomponent MSNs based nanosystems for infection management is proposed. These nanosystems, containing two antimicrobial agents, levofloxacin and Zn2+, have been synthetized by external functionalization of MSNs with a polycationic dendrimer (MSNs-G3), which favours its internalization inside the bacteria and lead the complexation with metal ions through the amines of the dendrimer. The nanosystems offer a notable improvement of the antibiofilm effect (above 99%) than both components separately as well as osteogenic capability with positive effect on the osteoblastic differentiation and preserved cell viability.

Keywords: methodology; mesoporous silica; effect; multicomponent mesoporous; nanosystem

Journal Title: Acta biomaterialia
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.