LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The self-organized task switching paradigm: Movement effort matters.

Photo by davidhofmann from unsplash

The self-organized task switching paradigm enables to investigate the link between task performance and task selection in a voluntary task switching setting that benefits task switches over task repetitions. For… Click to show full abstract

The self-organized task switching paradigm enables to investigate the link between task performance and task selection in a voluntary task switching setting that benefits task switches over task repetitions. For example, waiting for a repetition-related stimulus onset denotes environmental costs, which are balanced with internal task-switch costs. Here we extent this research by asking whether movement effort also plays a crucial role for task selection. In detail, we investigate how motor-related consequences, i.e., increasing force for task repetitions, influence task-switching behavior. Participants voluntarily switched between a number (i.e., even or odd) or letter task (i.e., vowel or consonant) using a robot system for response execution. With consecutive task repetitions the robot system was harder to move to the response target as we systematically added a damping load. We found that switch rate correlated with cognitive switch costs (i.e., costs in: reaction time, r = -0.741, and error rate, r = -0.545), and motor repetition cost represented by movement-time increment, r = 0.414. Interestingly, switch rate also correlated with individual force maximum, r = -0.480. However, switch rate did not correlate with movement-impulse increment, r = -0.033. Stepwise multiple regression analyses across participants revealed that 66% of variance are explained including all predicting factors. Yet, only cognitive costs and individual force maximum reached significant importance in the regression model. Hence, we extended switch-rate analyses using linear regression on a within-subject level, and thus, keeping individual force maximum constant. We found about 84% of variance explained by motor and cognitive costs. Thereby, movement impulse predicted task selection more than reaction time and more than movement time. Thus, we demonstrated that both cognitive and motor consequences influence task-switch behavior. Furthermore, we showed that task selection is importantly modulated by motor effort related to individual motor skills.

Keywords: task; movement; switch; task switching; motor; effort

Journal Title: Acta psychologica
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.