BACKGROUND AND OVERVIEW In contrast to subtractive 3-dimensional (3D) techniques synonymous with computer-aided design and computer-aided manufacturing, rapid progress in additive 3D printing, especially fused filament fabrication or fused deposition… Click to show full abstract
BACKGROUND AND OVERVIEW In contrast to subtractive 3-dimensional (3D) techniques synonymous with computer-aided design and computer-aided manufacturing, rapid progress in additive 3D printing, especially fused filament fabrication or fused deposition modeling, can change the practice of dentistry. CASE DESCRIPTION In this article, the authors outline the digital workflow for fused filament fabrication and fused deposition modeling 3D printing that involves converting a Digital Imaging and Communications in Medicine file (scan or radiograph) to a printable Standard Triangle Language file that can be modified (additions or manipulations) using a readily accessible software for 3D printing. The authors also present a clinical case series showing various applications for this technique, including clinician and patient education, treatment planning, and posttreatment evaluations. CONCLUSIONS AND PRACTICAL IMPLICATIONS The low cost and simple workflow of additive 3D printing has potential to improve precision and efficiency in clinical dentistry for both academic and private practices.
               
Click one of the above tabs to view related content.